
Image Processing & Communication, vol. 17, no. 4, pp. 297-306
DOI: 10.2478/v10248-012-0058-3 297

EVOLUTIONARY ALGORITHMS APPROACH FOR CUTTING STOCK
PROBLEM

ANDRZEJ ROMANOWSKI, ROBERT NOWOTNIAK, KACPER KAWECKI, TOMASZ JAWORSKI, ZBIGNIEW CHANIECKI,

KRZYSZTOF GRUDZIEŃ

Institute of Applied Computer Science, Lodz University of Technology, Poland

androm@kis.p.lodz.pl

Abstract. This paper contain study of three al-

gorithms for optimisation of use of materials for

cutting process. Cutting Stock Problem (CSP)

and one dimensional guillotine cat variant of the

CSP is introduced. Afterwards three different

way of solving the problem are presented. For

each of theme one algorithm is proposed. First

is creating all the possible solutions and choos-

ing the best one. Second is trying to recreate

a human thinking process by using a heuristic

search. Third one is inspired by an evolution

process in the nature. Design and implementa-

tion of each of them is presented. Proposed al-

gorithms are tested and compared to each other

and also to the other known solutions.

1 Introduction
1.1 Background

Optimization of material use in cutting processes is a

complex problem. The issue of optimal cutting occurs

in many areas of industry - hard board, wood, paper, win-

dow, metal, glass and other industries. For each one, the

problem is a bit different, also each one have a different

optimality criteria, but there are some which are common

for all of them. Problem could be defined in one, two or

three-dimensional space, cuts could be made in a guillo-

tine or non-guillotine style, and many other cases.

1.2 Definition of Cutting Stock Problem

General definition of Cutting Stock Problem (CSP) is "

Smaller pieces with a given order demand have to be cut

from larger stock material. The objective is to minimize

the amount of stock material needed to produce the or-

dered pieces" [1]. In real life, there are plenty of CSP vari-

ants. They mainly differ in additional restrictions, which

real occurrence of it has different applications. In a wood

industry, the thickness of a blade needs to be considered,

when in a paper industry, often blade thickness is negli-

gible. When pipes are going to cut, only one dimension

is taken into account, while for cutting hardboards two

dimensions must be considered. There are many more as-

pects and restriction which can be thought of.

One-dimensional guillotine cut has many applications,

mostly in pipe, paper, steel and fibre industries. It oc-

curs when we consider only one dimension (length), and

a stock material all the time is cut in the same way -

Unauthenticated
Download Date | 3/22/16 10:41 PM



298 A. Romanowski et al.

mostly in perpendicular to the considered dimension. If

all stock materials have the same length, it can be exam-

ined as one-dimensional cutting stock problem (1D-CSP).

Main costs of 1D-CSP are remaining pieces after cut pro-

cess, called trim-loss, which are in most cases treated as

a waste of a stock material. Problem was studied with re-

gard to minimization of trim-loss and reduction of a num-

ber of different cutting patterns. Constraint of equal size

of the stock material simplifies the problem. Removing

constraint makes the issue more complicated. Considered

case is that each stock material can have a different length.

In a real life, such case occurs commonly in the wood in-

dustry, but often in different industries there is more then

one length of the stock material available.

1.3 Quality of solutions vs. time complexity
of different algorithms

In most of analyses of the CSP problem, the main issue is

cost of material or cost of cutting, but a time cost of find-

ing the best solution is ignored. The cost of finding the op-

timal solution is an important economical aspect. Imagine

that someone can spend lot of resources to find the opti-

mal solution and only some small part of it is obtained

from its result. For example, there is machinery, which

can cut 10 pieces in one minute. Average order contains

about 250 different pieces. Cutting each order take about

25 minutes. So solution for next order should be found

in this time. If problem is very complicated finding op-

timal solution can take much more time. In case when

calculation is much longer then this 25 minutes, probably

less expensive will be using one or two stock materials

more, then stopping machinery. Therefore, a suboptimal

solution can be treated as proper one, as long as it is avail-

able in remarkably shorter time. This paper presents that

is it possible to find a satisfying suboptimal result within

satisfactory short time.

2 Selected algorithms

CSP is a well-known problem, and a lot of work can be

found in literature. However, there are still areas for novel

approaches and improvement, since there is a plethora of

criteria that can be posed on the problem solution. There

are three algorithms proposed in this paper to be some-

how face each other since they are based on different ap-

proaches. First one is to obtain the optimal solution to be

compared with evolutionary-based other two.

2.1 Brute-force search

The first idea, perfect for a benchmark for the other ap-

proaches, is to find all possible combination of the cut-

ting stock material into the pieces and choose the best one

in terms of optimal material use. Brute-force search or

exhaustive search is a very general problem-solving tech-

nique that consists of systematically enumerating all pos-

sible candidates for the solution and checking whether

each candidate satisfies the problem’s statement. This can

be accomplished using different algorithms, however tree

search seems to be the most common choice for Cutting

Stock Problem. In the case when all the required output

pieces have to be the same length, the solution is trivial.

However, for different lengths of pieces, the sorted list

of pieces needs to be prepared. As the order of differ-

ent length of pieces may influence the solution, all pos-

sible combinations of order need to be verified. There-

fore, Breadth-first search for checking all the sequences,

and for each node of the tree run the Depth-first search

for finding the optimal materials sequence can be applied.

Such solution can find optimal solution [2].

2.2 Heuristic algorithm (human thinking
based)

The solution proposed in 2.2 is quite complex and need lot

of memory for complicated problems. Searching in such

tree needs a lot of resources. Dealing with such problems

needs some intelligent mechanisms. Artificial intelligence

Unauthenticated
Download Date | 3/22/16 10:41 PM



Image Processing & Communication, vol. 17, no. 4, pp. 297-306 299

often tries to simulate a human thinking. For human brain,

it is easy to find a right combination of two pieces, but for

a bigger amount is much harder; hence an algorithm is re-

quired to proceed with these steps. Since this operation is

similar to the route-finding problem, the solution such as

heuristic search strategy can be adopted here. There is a

big family of such algorithms. Main difference between

them is an evaluation function, which in special case is

called heuristic function h(n) According to [3] heuristic

function is the estimated cost of the cheapest path form

node n to goal. The A* (A-star) algorithm uses also g(n)

which is the cost of reaching the node. The optimality of

solution is proved here [3, 4]. The real and important cost

in the CSP is a material waste, so the heuristic function

should predict the material waste, however it is difficult

to predict. Fortunately prediction doesn’t have to be very

precise. It should help to choose the best node. Wrong

prediction doesn’t mean that the algorithm won’t find the

solution, but proper prediction would accelerate the algo-

rithm [10]. The proposition of the function which will

predict the cost is using a modulo operation. If h(n) is an

estimated distance and min(p) returns length of the small-

est available piece the proposed function can be described

as (1):

g(n) = h(n) mod min(p) (1)

prediction could be very imprecise for h(n) significantly

greater then min(p). However. (2):

k mod n < n (2)

In this case h(n) is also significantly greater then g(n).

It means that: firstly algorithm will choose pieces due

to the length (longest pieces first), but when it comes to

nodes which are close to the solution the cost factor be-

come important. Such solution quite accurately recreates

human thinking.

2.3 Nature-inspired algorithm (genetic al-
gorithm)

Genetic algorithms (GAs) were created by John Holland,

from University of Michigan in 1960s. They were in-

vented to study a phenomenon of an adaptation in the na-

ture [4, 5]. Years later they were adapted to solve other

problems. In genetic algorithms process of genetic re-

production is imitated including gene recombination and

gene mutation. There is no rule how many times the al-

gorithm should be iterated. The interesting fact is, that it

is barely feasible to obtain the same population in each

run of the algorithm. It is due to the fact, that random-

ness plays an important role there. Genetic algorithms

with replaced the binary representation are called evolu-

tion algorithms. There is no limitation for genetic oper-

ators, while in GAs there are only crossover and muta-

tion operators. Operators are divided in two groups one

or multi-arguments. Example of the one-argument oper-

ator is mutation. In evolution algorithms there could be

few different operators for mutations and crossings.

Authors considered all constraints, and decided that the

easiest way will be using the so-called evolution strategy.

The main difference from the genetic and evolution algo-

rithm is, that there is no population of one chromosome,

but set of different chromosomes creating one specimen,

whereas proposed is built from the chromosomes. Each of

the chromosomes represents one particular stock material.

Each chromosome will contain a set of genes. Each gene

represents one particular pieces or an empty space (none).

Algorithm will run in the following way. Create specimen

with set of chromosomes containing empty genes. Ran-

domly set genes for chromosomes in such way, that one

gene can be used only once, and all gens are used. Rate

the whole specimen. Remember the mark. Rate chro-

mosomes. Select pairs of random chromosomes. Make

some crossing between chromosomes. Make some mu-

tation. Rate whole specimen, if rate is better then previ-

ous, remember specimen. Repeat steps from rating each

Unauthenticated
Download Date | 3/22/16 10:41 PM



300 A. Romanowski et al.

of chromosomes. Crossing and mutation operation must

be done in such way, that no piece is changed or taken out

from the solution. Proposed solution is to make a crossing

between different chromosomes, which is far from natu-

ral mechanisms. However, for the presented problem of

interest this arrangement should work fine. Mutation op-

erator could make random swap of single genes. More-

over to obtain good result, only crossovers that make re-

sults better should be applied. It is due to the fact, that

there is no population created. When there is population

of chromosomes, there is also mechanism of natural se-

lection, which eliminates week specimens. If it comes to

mutation process, it can’t be limited only to the mutation,

which make result betters. When the algorithm will get

stuck in some local maximum, it is hardly probable that

cross operators can get out from it. For getting out of it

the mutation operator are used [5, 6]. Proposed algorithm

is far from classical genetic algorithms, it is even far of

the evolution algorithm. However, it is based on the same

idea - the natural mechanism of evolution. More theory

and related work can be found here [10, 11, 12, 13, 14].

3 Numerical experiments

The algorithms have been compared with three different

ways. The first stage was finding the difference in a re-

sult due to parameters, which can be set. The next stage

was comparing created algorithms to each other. The last

stage was comparing algorithm with results from other re-

search. For testing, the examples from [6] and [7] have

been drawn.

3.1 Comparison criteria

Most important criterion is the optimality. It will be

shown in the percentage of use of the material, or in the

percentage of the material waste (trim losses). However,

comparing only the optimality without any relation of the

results it will be only in last stage of tests. The time of the

calculation is a highly important factor for the end-user.

However, it is strictly dependent on an implementation,

so comparing due to the time of the calculation is not ob-

jective. Therefore, optimality of solution will be related

to the time of calculation only.

3.2 Datasets

Dataset 1 has been taken from [6]. Originally, it has an

unlimited number of material pieces of 1900mm in length

each piece. For testing purpose, we used 15 - according

to [6] for the optimal solution only 8 is needed. The re-

quired piece list is the following:

• 8 pieces 330 mm each

• 8 pieces 360 mm each

• 13 pieces 385 mm each

• 11 pieces 415 mm each.

Dataset 2 is taken from [7]. Originally it has an unlim-

ited number of material pieces of 1900mm in length each

piece. For testing purpose we used 18 - according to [6]

for the optimal solution only 13 is needed. The required

piece list is the following:

• 8 pieces 340 mm each

• 8 pieces 365 mm each

• 13 pieces 385 mm each

• 11 pieces 415 mm each

• 5 pieces 435 mm each

• 6 pieces 260 mm each

• 4 pieces 300 mm each

• 7 pieces 320 mm each

• 3 pieces 335 mm each.

Dataset 3 is taken from [7]. Originally it has an unlim-

ited number of two types of material pieces of 1900mm

and 2200mm in length accordingly. For testing purpose

we used 10 of each type - according to [7] for the optimal

solution only 6 of each type is needed. The required piece

list is the following:

Unauthenticated
Download Date | 3/22/16 10:41 PM



Image Processing & Communication, vol. 17, no. 4, pp. 297-306 301

• 9 pieces 340 mm each

• 8 pieces 365 mm each

• 13 pieces 385 mm each

• 11 pieces 415 mm each

• 5 pieces 435 mm each

• 6 pieces 260 mm each

• 4 pieces 300 mm each

• 7 pieces 320 mm each

• 3 pieces 335 mm each.

Dataset 4 is taken from [7]. Originally it has an unlim-

ited number of material pieces of 5600mm in length. For

testing purpose we used 80 of each type - according to [8]

for the optimal solution only 73 is required. The required

piece list is the following:

• 22 pieces 1380 mm each

• 25 pieces 1520 mm each

• 12 pieces 1560 mm each

• 14 pieces 1710 mm each

• 18 pieces 1820 mm each

• 18 pieces 1880 mm each

• 20 pieces 1930 mm each

• 10 pieces 2000 mm each

• 12 pieces 2050 mm each

• 14 pieces 2100 mm each

• 16 pieces 2140 mm each

• 18 pieces 2150 mm each

• 20 pieces 2200 mm each.

4 Results

4.1 Parameter comparison

In this test, only Heuristic Algorithm, and Genetic Al-

gorithms have been compared. This is due to the fact,

that the Tree Search does not have any parameters, which

can have an influence on the results. The first one im-

plemented has one parameter that can be adjusted. It is a

value telling how good solution should be treated as sat-

isfyingly optimal. In the algorithm class this value is kept

as a floating-point number, which should fall between 0.0

and 1.0. Setting allows 10 different value of the parameter

from 0.900 up to 0.999 with step 0.011.

However, if the value is lower then a total length of

pieces divided by a total length of materials (minimal op-

timality needed in order to find the solution), it is changed

to this coefficient. For the tests where only one length of

the stock material is used, each run has exactly the same

results, but when there is more length of material, there is

some randomness, so the test run 10 times and the results

are averaged. Results are shown in Tab. 1-4.

One can observe on dataset 1,2,3 that the heuristic

mechanism give us a quite good estimation of the result. It

can observed that it gives some limit, under it, there is no

difference what parameter is set. Above this limit, param-

eters have a significant influence on time of calculation.

Also it changes an amount of the trim losses. On dataset

4 it can be observed that a higher value of the parameter

not always results in better solution.

Interesting think is in results of dataset 3. For a proper

analysis Tab. 5 must be taken into a consideration. If only

the minimum values of function calls are examine, result

is similar to rest of the tests. Why average and maximum

values differ so much? It is because the algorithm selects

random order of stock material. As result shows, these

orders have big influence on the algorithm performance.

Taking in to consideration that for one function execu-

tion is more then one random factor, and there is about

Unauthenticated
Download Date | 3/22/16 10:41 PM



302 A. Romanowski et al.

Tab. 1: Results for the parameter test of Heuristic Algorithm for the dataset 1
parameter material waste function time

used calls
0.900 9 7.1% 16 882 0.129 s
0.911 9 7.1% 16 882 0.136 s
0.922 9 7.1% 16 882 0.139 s
0.933 9 7.1% 16 882 0.135 s
0.944 9 7.1% 16 882 0.134 s
0.955 9 7.1% 16 882 0.135 s
0.966 9 7.1% 16 882 0.139 s
0.977 9 7.1% 16 882 0.138 s
0.988 8 0.4% 511 760 0.971 s
0.999 8 0.4% 74 671 228 314.859 s

Tab. 2: Results for the parameter test of Human Thinking Based Algorithm for the dataset 2
parameter material waste function time

used calls
0.900 13 3.94% 8 503 0.088 s
0.911 13 3.94% 8 503 0.090 s
0.922 13 3.94% 8 503 0.085 s
0.933 13 3.94% 56 758 0.218 s
0.944 13 3.94% 62 158 0.290 s
0.955 13 3.94% 179 593 1.219 s
0.966 13 3.94% 179 593 1.288 s
0.977 13 3.94% 1 067 238 3.823 s
0.988 13 3.94% 25 990 200 117.518 s
0.999 13 ? >617 426 704 > 10 h

Tab. 3: Results for the parameter test of Human Thinking Based Algorithm for the dataset 3
parameter material 1 material 2 waste function time

used used calls
0.900 6.3 6.0 3.52% 8 521 0.109 s
0.911 6.4 5.7 2.37% 10 629 0.141 s
0.922 5.6 6.4 2.42% 18 672 0.161 s
0.933 5.9 6.2 2.66% 160 190 1.010 s
0.944 6.1 5.9 2.20% 135 944 0.882 s
0.955 6.2 5.8 1.98% 67 189 0.504 s
0.966 5.7 6.3 2.35% 176 888 1.373 s
0.977 6.0 6.0 2.13% 136 931 0.841 s
0.988 6.8 5.3 1.93% 4 739 013 20.231 s
0.999 ? ? ? ? ?

Unauthenticated
Download Date | 3/22/16 10:41 PM



Image Processing & Communication, vol. 17, no. 4, pp. 297-306 303

Tab. 4: Results for the parameter test of Human Thinking Based Algorithm for the dataset 4
parameter material waste function time

used calls
0.900 75 2.55% 44 562 0.464 s
0.911 75 2.55% 44 562 0.491 s
0.922 75 2.55% 44 562 0.452 s
0.933 75 2.55% 44 562 0.464 s
0.944 75 2.55% 44 562 0.450 s
0.955 75 2.55% 44 562 0.500 s
0.966 75 2.55% 44 562 0.505 s
0.977 76 3.66% 1 553 681 4.993 s
0.988 74 1.44% 8 318 912 19.459 s
0.999 74 1.44% 3 364 290 321 5316.027 s

Tab. 5: Diversity function calls for Dataset 3
parameter average maximum minimum

0.900 8 521 18 184 7 078
0.911 10 629 26 662 7 102
0.922 18 672 93 478 7 359
0.933 160 190 779 828 7 260
0.944 135 944 700 556 7 359
0.955 67 189 316 902 7 365
0.966 176 888 1 441 111 7 221
0.977 136 931 376 658 7 476
0.988 4 739 013 16 545 469 93 911

Tab. 6: Cross probability parameter comparison for the dataset 1
parameter iteration materials used function calls time function calls function calls

per iteration per second
0.25 5 325 9.3 178 526 3.993 34.121 43 428
0.30 5 923 9.1 205 270 4.366 34.926 46 234
0.35 5 283 9.1 189 363 3.930 36.170 46 779
0.40 4 057 9.1 150 623 3.061 37.532 48 288
0.45 4 504 9.1 172 602 3.714 38.742 45 348
0.50 5 038 9.1 199 466 4.099 39.860 49 726
0.55 4 374 9.0 178 122 3.622 40.972 48 150
0.60 4 135 9.1 178 286 3.620 44.743 49 396
0.65 2 588 9.0 112 290 2.258 43.739 49 115
0.70 4 110 9.0 183 160 3.901 44.552 47 962
0.75 3 178 9.0 144 166 2.744 45.554 51 811

Unauthenticated
Download Date | 3/22/16 10:41 PM



304 A. Romanowski et al.

one million function calls, average value taken from 10

test cannot give us a proper statistic. However calculation

of the rate between the time, function calls or iteration

give us rather stable values. With growth of the parameter

value the ration of function calls per iteration is recogniz-

ably growing. This mean there is more cross operation

done, and each operation cause more function calls. Also

amount of function calls per second is growing, but the

growth is not so stable - it is also dependent from random

events. The same we can observe with trim loss. The re-

lation of mutation parameter comparison for the separate

datasets show interesting features, which can be seen if

plotted. For dataset 1 the difference between parameter

0.025 and 0.075 is not significant, but it can be derived

that bigger probability of the mutation causes more drops.

It can be more clearly observed for dataset 4. In these

places, mutation made change that lowered the rate. Such

changes are useful when the algorithm get stacked in some

local maximum. However, when there are too many mu-

tations, which have a negative influence on rate, it could

slow down the algorithm, or even make a right solution

impossible to find. When there are too less mutations, it

makes the algorithm stacked in local maximums for long

time, so in fact it also slows down the algorithm.

4.2 Performance comparison with existing
implementations

Dataset 1: Described optimal solution need 8 stock ma-

terial and it gives average trim loss 0.724%. Both algo-

rithms returned a solution with 9 stock materials when

parameters were set to default values. However when

human thinking based algorithm has its parameter set to

maximum there is an optimal solution found. Also, na-

ture mechanism based algorithm can find such solution

but with the given input it took a long time and it need

luck. Optimal solution was found in 2 runs out of 100.

However, when the amount of the available stock material

has been changed to 8, the optimal solution was always

found.

Dataset 2: Optimal solution for this dataset is when 13

materials is used. Such result is obtained without any

problem by human thinking based algorithm. Probabil-

ity of obtaining this solution by nature mechanisms based

algorithm with default parameters is around 7%.

Dataset 3; Due to the [7], for the optimal solution 6 ma-

terials of both lengths (1900mm and 2200mm) are needed

with the average trim losses 3.466%. However, the so-

lution does not care about the constraint of amount of

cuts. Human thinking based algorithm found solution

containing of 1 materials of the length 1900mm and 10

materials 2200mm long, which results in the average trim

loss equal to 0.659%. The genetic algorithm seems to be

stuck in a local maximum and it gives result containing

10 materials of the length 1900mm and 3 materials of

the length 2200mm, which result in 4,561% of the trim

loss. Again, setting the available materials to the minimal

needed amount result in the optimal solution. Dataset 4:

According to [8] 19 different optimal solution exists, for

which 73 stock material are needed resulting in 0.401% of

waste. Human thinking based algorithm with default pa-

rameters return solution with 75 raw materials. Setting the

parameter to the maximum results in 74 materials solution

- it cannot find the optimal solution. Nature mechanisms

based algorithm with the default values return result con-

taining 79 materials, by changing it can be reduced up to

75 materials. It is disputable if assumed by [8] solutions

exist. We set up available materials to 73 and run nature

mechanisms based algorithm. Proper solution was found

1 time per 20 runs.

5 Final conclusions

In this paper, three different algorithms have been consid-

ered. All of them work and they find an optimal or sub-

optimal solution. Brute-force algorithm is rather useless

in a real life due to its time complexity. However, it gave

a comparison, and shows how significantly heuristics and

Unauthenticated
Download Date | 3/22/16 10:41 PM



Image Processing & Communication, vol. 17, no. 4, pp. 297-306 305

artificial intelligence can improve the performance. The

two other algorithms work fast. The heuristic algorithm

was able to find an optimal solution for 3 from 4 datasets,

and for the last datasets it was able to find a suboptimal

solution, which was near from an optimal one. The algo-

rithm presents how good can be recreating human think-

ing.

The genetic algorithm for each dataset was finding

rather good suboptimal solution, but when the available

stock material was limited to minimum needed in most

cases, it was finding an optimal solution, even when

heuristic algorithm was unable to find such one. Prob-

ably further research and development on this algorithm

can result in finding an optimal solution in most cases.

The both proposed algorithms (heuristic and genetic) can

be used in the industry; nevertheless the heuristic algo-

rithm has greater chance because it gives more stable re-

sults. The presented genetic algorithm would need some

improvements before it works satisfyingly well. Both al-

gorithms are a good alternative for known exhaustive way

of solving one-dimensional Cutting Stock Problem.

References

[1] C. Nitsche, G. Scheithauer, J. Terno, Tighter re-

laxations for the cutting stock problem, European

Journal of Operational Research, No. 112, pp. 654-

663, 1999

[2] T.H. Cormen , C.E. Leiserson, R.L. Rivest, C. Stein,

Introduction to Algorithms, Second Edition, The

Massachusetts Institute of Technology, 2001

[3] S.J. Russel, P. Norvig, Artificial Intelligence, A

Modern Approach, Second Edition, Pearson Educa-

tion, 2003

[4] M. Melanie, An Introduction to Genetic Algorithms,

The Massachusetts Institute of Technology, 1996

[5] B.J. Wagner, A genetic algorithm solution for one-

dimensional bundled stock cutting, European Jour-

nal of Operational Research, No. 117, pp. 368-381,

1999

[6] G. Schilling, M.C. Georgiadis, An algorithm for the

determination of optimal cutting patterns, Comput-

ers & Operations Research, No. 29, pp. 1041-1058,

2002

[7] CSP - cutting stock problem, http://en.

wikipedia.org/wiki/ Cutting_stock_problem,

2010 (retrieved as of may 2012)

[8] R. Morabito, L. Belluzzo, Optimising the cutting of

wood fibre plates in the hardboard industry, Euro-

pean Journal of Operational Research, No. 183, pp.

1405-1420, 2007

[9] S. Umetani, M. Yagiura, T. Ibaraki, One-

dimensional cutting stock problem to minimize

the number of different patterns, European Journal

of Operational Research, No. 146, pp. 388-402,

2003

[10] E. Hopper, B. Turton, A genetic algorithm for a 2d

industrial packing problem, Computers & Industrial

Engineering, No. 37, pp. 375-378, 1999

[11] N. Siu, E. Elghoneimy, Y. Wang, W. Gruver, M.

Fleetwood, D. Ko- tak, Rough mill component

scheduling: Heuristic search versus genetic algo-

rithms, IEEE International Conference on Systems,

Man and Cybernetics, pp. 4226-4231, 2004

[12] R. Alvarez-Valdes, A. Parajon, J.M. Tamarit, A

tabu search algorithm for large-scale guillotine

(un)constrained two-dimensional cutting problems,

Computers & Operations Research, No. 29, pp. 925-

947, 2002

[13] M. Hi, Exact algorithms for unconstrained three-

dimensional cutting problems: a comparative study,

Unauthenticated
Download Date | 3/22/16 10:41 PM


